nnnnnnnnnnnnnnnnnnnnnnnnnnnn

CMSC 201 Fall 2018
Homework 3 — While Loops

Assignment: Homework 3 — While Loops
Due Date: Friday, September 28th, 2018 by 8:59:59 PM
Value: 40 points

Collaboration: For Homework 3, collaboration is allowed. Make sure to
consult the syllabus about the details of what is and is not allowed when
collaborating. You may not work with any students who are not taking CMSC
201 this semester.

If you work with someone, remember to note their name, email address, and
what you collaborated on by filling out the Collaboration Log.

You can find the Collaboration Log at https://tinyurl.com/collab201-fal8.

Remember that all collaborators need to fill out the log each time; even if the
help was only “one way” help.

Make sure that you have a complete file header comment at the top of each
file, and that all of the information is correctly filled out.

File: FILENAME . py
Author: YOUR NAME
Date: THE DATE

Section: YOUR DISCUSSION SECTION NUMBER
E-mail: YOUR EMAIL@umbc.edu
Description:

DESCRIPTION OF WHAT THE PROGRAM DOES

H HHHH R

CMSC 201 - Computer Science I for Majors Page 1


https://tinyurl.com/collab201-fa18

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Instructions
For each of the questions below, you are given a problem that you must solve
or a task you must complete.

You should already be familiar with variables, expressions, input (), and
print (). You should also be familiar with one-way, two-way, and multi-way
decision structures.

This assignment will focus on implementing algorithms using while loops,
including any Boolean logic needed.

At the end, your Homework 3 files must run without any errors.

NOTE: Your filenames for this homework

must match the given ones exactly.
And remember, flenames are case sensitive!

Additional Instructions — Creating the hw3 Directory

During the semester, you'll want to keep your different Python programs
organized, organizing them in appropriately named folders (also known as
directories).

Just as you did for Homework 1 and Homework 2, you should create a
directory to store your Homework 3 files. We recommend calling it hw3, and
creating it inside the Homeworks directory inside the 201 directory.

If you need help on how to do this, refer back to the detailed instructions in
Homework 1. (You don’t need to make a separate folder for each file. You
should store all of the Homework 3 files in the same hw3 folder.)

CMSC 201 - Computer Science I for Majors Page 2



nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Coding Standards

Prior to this assignment, you should re-read the Coding Standards, available
on Blackboard under “Assignments” and linked on the course website at the
top of the “Assignments” page.

For now, you should pay special attention to the sections about:
Naming Conventions
Use of Whitespace
Constants
Comments (specifically, File Header Comments)
o For Homework 3, you should start using In-Line Comments
where appropriate
e Line Length

Additional Specifications

For this assignment, you must use main () as seen in your lab, and as
discussed in class.

For this assignment, you do need to worry about “input validation” on a
number of the problems. Many of the parts of this assignment center around
validating input from the user. For example, the user may enter a negative
value, but your program may require a positive value. Make sure to follow
each part’s instructions about input validation.

If the user enters a different type of data than what you asked for, your
program may crash. This is acceptable.

For example, if your program asks the user to enter a whole number, it is
acceptable if your program crashes if they enter something else like “dog” or
“twenty” or “88.2" instead.

Here is what that might look like:
Please enter a number: twenty
Traceback (most recent call last):
File "test file.py", line 10, in <module>
num = int(input("Please enter a number: "))
ValueError: invalid literal for int() with base 10: 'twenty'

CMSC 201 - Computer Science I for Majors Page 3



nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Questions

Each question is worth the indicated number of points. Following the coding
standards is worth 4 points. If you do not have complete file headers and
correctly named files, you will lose points.

hw3 partl.py (Worth 6 points)
This program simulates the up and down movement of a hailstone in a storm.

The program should ask the user for an integer, which will be the starting
height of the hailstone. Based on the current value of the height, the program
will repeatedly do the following:

e If the current height is 1 (or 0), quit the program

e If the current height is even, cut it in half (divide by 2)

e |f the current height is odd, multiply it by 3, then add 1

The program will keep updating the number, following the above rules, until
the number is 1. It should print out the height of the hailstone at each step,
including at the end. Once the hailstone is at height 1 (or 0), the program
should end, and print out that the hailstone stopped.

(HINT: Think carefully about the order in which the program checks each of
the conditions, or it won’t perform correctly.)

For example, given a starting value of 24, here are the numbers to output:
24 -> 12 -> 6 -> 3 -> 10 -> 5 ->16 -> 8 -> 4 -> 2 ->1

For this part of the homework, you can assume the following:
e The number will be positive (zero or greater than zero)

(See the next page for sample output.)

CMSC 201 - Computer Science I for Majors Page 4



nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Here is some sample output for hw3_partl.py, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

linux2[2]% python3 hw3 partl.py
Please enter the starting height of the hailstone: 36
Hailstone is currently at height 36
Hailstone is currently at height 18
Hailstone is currently at height 9
Hailstone is currently at height 28
Hailstone is currently at height 14
Hailstone is currently at height 7
Hailstone is currently at height 22
Hailstone is currently at height 11
Hailstone is currently at height 34
Hailstone is currently at height 17
Hailstone is currently at height 52
Hailstone is currently at height 26
Hailstone is currently at height 13
Hailstone is currently at height 40
Hailstone is currently at height 20
Hailstone is currently at height 10
Hailstone is currently at height 5
Hailstone is currently at height 16
Hailstone is currently at height 8
Hailstone is currently at height 4
Hailstone is currently at height 2
Hailstone stopped at height 1

linux2[3]% python3 python hw3 partl.py
Please enter the starting height of the hailstone: 0
Hailstone stopped at height 0

linux2[4]% python3 python hw3 partl.py

Please enter the starting height of the hailstone: 16
Hailstone is currently at height 16

Hailstone is currently at height 8

Hailstone is currently at height 4

Hailstone is currently at height 2

Hailstone stopped at height 1

(HINT: If you want to prevent the program from outputting decimal numbers
like 6.0 and 3.0, you will need to use integer division and/or casting.)

CMSC 201 - Computer Science I for Majors Page 5



nnnnnnnnnnnnnnnnnnnnnnnnnnnn

hw3_part2.py (Worth 4 points)

Write a program that is able to calculate the answer to an integer division
problem without using the division, integer division, mod, or multiplication
operators.

The program should ask the user for two integers, and should compute the
answer to firstNum // secondNum. The program should then output the
full equation, including the answer, to the user.

For these inputs, you can assume the following:
e The first number may be any positive integer, or zero
e The second number may be any positive integer (greater than zero)

Here is some sample output, with the user input in blue.

(Yours does not have to match this word for word, but it should be similar.)
linux2[12]% python3 hw3 part2.py

Please enter the first number: 0

Please enter the second number: 15
0// 15 =0

linux2[13]% python3 hw3 part2.py
Please enter the first number: 15
Please enter the second number: 7
15 // 7 = 2

linux2[14]% python3 hw3 part2.py
Please enter the first number: 7359
Please enter the second number: 9
7359 // 9 = 817

linux2[15]% python3 hw3 part2.py
Please enter the first number: 201
Please enter the second number: 42
201 % 42 = 6

linux2[16]% python3 hw3 part2.py
Please enter the first number: 2329
Please enter the second number: 17
2329 % 17 = 137

CMSC 201 - Computer Science I for Majors Page 6



nnnnnnnnnnnnnnnnnnnnnnnnnnnn

hw3_part3.py (Worth 9 points)

A popular internet-based DVD rental company is buying up everyone’s used
DVDs. They want you to create a program that makes sure the DVDs they
buy are decent and sold to them at a good price.

Your program should first ask how many times a movie has been watched,
then it should ask how much money they want to sell this movie for, and
finally it should ask what genre of movie it is.

The user must enter valid information for each input, and the program must
re-prompt the user as many times as needed until they enter valid input for
each question. Once they enter valid values for all three questions, the
program should display the times watched, price, and genre as entered by
the user.

You can assume that the type of input will be correct for each question
asked, but you must validate the value entered.

If the user enters an invalid input, the program must tell the user why it is
invalid: for watches, whether it is too high or low; for price, whether it is too
high or low or not divisible of 0.25; for genre, that it must be ‘romance’, or
‘comedy’ to be accepted.

The input must be validated to these specifications:
e Times watched must be between 0 and 10, inclusive.
e Price must be:
o Between 0 and 15, inclusive, and
o Divisible by 0.25 (so 1.25, 2.50, 5.00, 10.75, etc. are all accepted)
e Genre must be ‘romance’, ‘comedy’, in all lowercase.

HINT: You should be using constants for at least some of these integer and
string values!

HINT: You can use floating point numbers with the modulus operator! Test
this out in the interpreter before you use it.

(See the next page for sample output.)

CMSC 201 - Computer Science I for Majors Page 7



nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Here is some sample output for hw3_part3.py, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

linux3[151]% python3 hw3 part3.py

Please enter the amount of times watched: 4

Please enter the price you want to sell for: 9.25
Enter the genre of movie (romance, comedy): comedy
You are selling a comedy movie that has been watched 4
times for 9.25 dollars.

linux3[152]% python3 hw3 part3.py

Please enter the amount of times watched: -10

You can't watch a movie a negative amount of times.
Please enter the amount of times watched: -1

You can't watch a movie a negative amount of times.
Please enter the amount of times watched: 20

We don't accept movies watched 20 times

Please enter the amount of times watched: 15

We don't accept movies watched 15 times

Please enter the amount of times watched: 10

Please enter the price you want to sell for: -10

We can't accept a negative amount.

Please enter the price you want to sell for: -10.43
We can't accept a negative amount.

We only accept prices that can be paid in quarters.
Please enter the price you want to sell for: 9.12

We only accept prices that can be paid in quarters.
Please enter the price you want to sell for: 7.75
Enter the genre of movie (romance, comedy): action
action is not a valid type, choose from romance or comedy
Enter the genre of movie (romance, comedy): adventure
adventure is not a wvalid type, choose from romance or
comedy

Enter the genre of movie (romance, comedy): romance
You are selling a romance movie that has been watched 10
times for 7.75 dollars.

linux3[153]%

CMSC 201 - Computer Science I for Majors Page 8



nnnnnnnnnnnnnnnnnnnnnnnnnnnn

hw3_part4.py (Worth 4 points)

Write a program that is able to act like your personal pedometer, by asking
the user how many steps they travelled in one week. The information
calculated must be the minimum and maximum steps travelled (and the days
that you walked those steps!). Make sure you use a loop to solve this
problem.

You need to create a program that does the following, in this exact order:
1. Get the number of steps travelled each day
2. Calculate and display the minimum & maximum steps walked.
3. Calculate and display the day those steps were taken.

As the program asks the user for the steps walked each day, it must print out
the number of the day, so they don’t lose track of which one they are on (see
the sample output).

You do not have to validate user input for this problem. You can
assume that all numbers entered with be bigger than or equal to 0.

Here is some sample output, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

linux2[123]% python3 hw3 partd.py
For day # 1
steps today: 345

For day # 2

steps today: 932
For day # 3

steps today: 1003
For day # 4

steps today: 123

For day # 5

steps today: 1249

For day # 6

steps today: 985

For day # 7

steps today: O

The min day was day 7 when you walked 0 steps.
The max day was day 5 when you walked 1249 steps.

CMSC 201 - Computer Science I for Majors Page 9



nnnnnnnnnnnnnnnnnnnnnnnnnnnn

hw3_part5.py (Worth 5 points)

Write a program that prints the numbers from 1 up to 105 (inclusive), one per
line. However, there are three special cases where instead of printing the
number, you print a message instead:
1. If the number you would print is divisible by 3, print the message:
The dog of wisdom knows all about this number.
2. If the number you would print is divisible by 7, print the message:
Hold on | have a meme for this.
3. If the number you would print is divisible by 3 and 7, instead print out:
Some infinities are bigger than other infinities!
Print the exact strings given! Failing to do so will lose you points.

Here is a partial sample output, showing from 1 to 13, and from 97 to 105.
linux2[169]% python hw3 part5.py

1

2

The dog of wisdom knows all about this number.
4

5

The dog of wisdom knows all about this number.
Hold on I have a meme for this.

8

The dog of wisdom knows all about this number.
10

11

The dog of wisdom knows all about this number.
13 [...]

97

Hold on I have a meme for this.

The dog of wisdom knows all about this number.
100

101

The dog of wisdom knows all about this number.
103

104

Some infinities are bigger than other infinities!

CMSC 201 - Computer Science I for Majors Page 10



nnnnnnnnnnnnnnnnnnnnnnnnnnnn

hw3_part6.py (Worth 8 points)
Create a program that will output a “counting” box.

The program should prompt the user for these inputs, in exactly this order:
1. The width of the box
2. The height of the box

For these inputs, you can assume the following:
e The height and width will be integers greater than zero

Using this width and height, the program will print out a box where there are
width numbers on each line and height rows. The numbers must count
down starting from the area of the box (width * height), and should
continue counting down (do not restart the numbering).

HINT: You can keep the print () function from printing on a new line by
using end=" " atthe end: print("Hello", end=" "). If you do want
to print a new line, you can call print without an argument. print ().

You can put anything you want inside the quotation marks — above, we have
used a single space, to separate the numbers in the counting box. You can
also use an empty string, a comma, or even whole words!

(See the next page for sample output.)

CMSC 201 - Computer Science I for Majors Page 11



nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Here is some sample output for hw3_part6.py, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

84
72
60
48
36
24
12

99
88
77
66
55
44
33
22
11

83
71
59
47
35
23
11

o8
87
76
65
54
43
32
21
10

a width: 12
a height:

82
70
58
46
34
22

81
69
57
45
33
21

80
68
56
44
32
20

10 9 8 7

143 142
132 131
121 120
110 109

97
86
75
64
53
42
31
20
9

7
79
67
55
43
31
19

1linux3[114]% python3
enter
enter

78
66
54
42
30
18

6 5 4

width: 11
height:

141
130
119
108
96
85
74
63
52
41
30
19
8 7

linux3[116]%

140
129
118
107
95
84
73
62
51
40
29
18
6 5

13

1linux3[115]% python3
enter a
enter a

linux3[113]% python3 hw3 parté6.py
enter a width: 4
enter a height: 2
8 7 65
4 321

hw3 parté.py

77 76 75 74 73
65 64 63 62 61
53 52 51 50 49
41 40 39 38 37
29 28 27 26 25
17 16 15 14 13
321

hw3 parté.py

139 138 137 136 135
128 127 126 125 124
117 116 115 114 113
106 105 104 103 102

94
83
72
61
50
39
28
17

4

93
82
71
60
49
38
27
le

92 91 90 89
81 80 79 78
70 69 68 67
59 58 57 56
48 47 46 45
37 36 35 34
26 25 24 23
15 14 13 12

321

134 133
123 122
112 111
101 100

(NOTE: The “box” might not actually be a box. The number of digits
increases as the value gets larger, and so the box gets wider.)

CMSC 201 - Computer Science I for Majors

Page 12




nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Submitting

Once your hw3 partl.py, hw3 part2.py, hw3 part3.py,

hw3 part4.py, hw3 part5.py, and hw3 part6.py files are complete,
it is time to turn them in with the submit command. (You may also turn in
individual files as you complete them. To do so, only submit those files
that are complete.)

You must be logged into your account on GL, and you must be in the same
directory as your Homework 3 Python files. To double-check you are in the
directory with the correct files, you can type 1s.

linux1[3]% 1s
hw3 partl.py hw3 part3.py hw3 part5.py

hw3 part2.py hw3 partd.py hw3 parté6.py
linux1[4]% B

To submit your Homework 3 Python files, we use the submit command,
where the class is ¢s201, and the assignment is HW3. Type in (all on one
line) submit cs201 HW3 hw3 partl.py hw3 part2.py

hw3 part3.py hw3 part4.py hw3 part5.py hw3 parté6py and
press enter.

linux1[4]% submit c¢s201 HW3 hw3 partl.py hw3 part2.py
hw3 part3.py hw3 partd.py hw3 part5.py hw3 parté6.py
Submitting hw3 partl.py...OK

Submitting hw3 part2.py...OK

Submitting hw3 part3.py...OK

Submitting hw3 part4.py...OK
Submitting hw3 part5.py...OK
Submitting hw3 part6.py...OK
linux1[5]% |}

If you don’t get a confirmation like the one above, check that you have not
made any typos or errors in the command.

You can check that your homework was submitted by following the directions
in Homework 0. Double-check that you submitted your homework correctly,
since an empty file will result in a grade of zero for this assignment.

CMSC 201 - Computer Science I for Majors Page 13



	Instructions
	Additional Instructions – Creating the hw3 Directory
	Coding Standards
	Additional Specifications
	Questions
	Submitting

